
ReSource65

User’s Guide
v. 1.00

A MOS Technology/Commodore 65xx Source Generator
for Microsoft DOS Platforms

Charles R. Bond
http://www.crbond.com

September 11, 2009

Chapter 1

Introduction

ReSource65 is a programmer’s aid which can be of great value in converting a binary object
file to a form which can be hand edited and assembled. Whether the original source of the
binary image is a computer file or ROM, as long is it can be read by ReSource65 an
assembler file can be produced.

Some of the major features of ReSource65 are:

• Identifies and names target memory locations.

• Supports an auxiliary symbol file which resolves code vs. data issues.

• Allows input of known labels and addresses.

• Handles .text, .byte, .word and .code blocks.

• Generates a source file conforming to the syntax of many assemblers.

Even if nothing whatsoever is known about the object file at first, a viable assembler file
can be generated. In the event that some information is available about calls to known
addresses, this information can be provided to improve the process. Recursive application
of ReSource65 and expansion of the symbol file can lead to a complete sectioning of the
assembler file into code and data blocks.

1

Chapter 2

Getting Started

2.1 Installation

To install ReSource65 simply unzip the archive into an appropriate folder. The files included
in resource65.zip are:

ReSource65.exe – the executable program file.

ReSource65.pdf – this manual.

sample.bin – an example binary file.

ReSource65 can operate on raw binary files, such as those created when a ROM image is
dumped to a file, or on files generated in the H65 format. The H65 file format is a printable
format suitable for hand editing. It contains all the information in a pure binary file, but
includes address location information. No checksums are used, so editing can be done
without recalculating checksum values.

A portion of a typical H65 file is shown below.

B180 4C E9 DC 20 52 B0 A0 01 B1 21 D0 06 A9 F9 A2 FF
B190 D0 E4 AA 88 B1 21 86 22 85 21 4C 63 B1 86 87 A6
B1A0 2A A4 2B 86 55 84 56 E8 D0 01 C8 38 8A E5 34 98
B1B0 E5 35 90 03 4C 55 C3 84 2B 86 2A A0 01 A2 00 A1
B1C0 55 91 55 A5 55 D0 02 C6 56 C6 55 38 A5 55 E5 77

If no H65 file exists for the program under consideration, ReSource65 will create one from
the raw binary file.

2

2.2 Running ReSource65

Generally, the first run of ReSource65 on a new program will operate on a raw binary file.
This file must be a ROM image file with a .bin extender. The sample file provided with
this implementation is named sample.bin.

The source generator built into ReSource65 actually operates on an H65 file, if one is not
called it will be created from the binary file.

To run ReSource65 on a binary file simply type:

C:[path] resource65 sample.bin

at the DOS prompt. Note that [path] is the path to your chosen folder.

You will be prompted to provide a starting address for the ROM code. This is the only
critical information that must be known for every program. Fortunately, the ROM start
location is usually accessible information.1

When this run completes, a file named sample.h65 will have been created. Subsequent
runs of ReSource65 should use this file to reduce the processing overhead.

In the event that a file in H65 format is available, invoke Resource65 with:

C:[path] resource65 sample.h65

2.2.1 Parameter Option

ReSource65 supports a single option on the command line. This option, which is simply
an n, determines whether the original code will be appended to source lines as comments.
For example, the following command line will cause the output file (*.asm) to omit adding
the original code as comments.

C:[path] resource65 sample.h65 n

This command line switch must follow the filename.
1Actually, it is possible to guess at the starting location and recover the correct start by troubleshooting

the result.

3

2.2.2 Source Generation

A first attempt at reconstructing the source file will be made on the first run of ReSource65.
It will be named sample.asm. This file should compile with slight modifications on many
6502 assemblers. It will compile without modification on the cbA65 assembler available as
a companion to ReSource65.

The sample files also include sample.sym. This file is an example of the auxiliary file which
must be generated by the programmer to aid in analysing the object file. Details are provide
in Section2.3.

A typical sequence of events to regenerate a viable source code version of a ROM file will
consists of these steps.

1. Run ReSource65 on a ROM image file with a *.bin extender.

2. Examine the reconstructed source *.asm to identify code and data sections, where
possible.

3. Create a *.sym specifying the start of code or data sections. (See Section 2.3 for
instructions on manipulating *.sym files.)

4. Rerun ReSource65 using the *.h65 file.

5. Update *.sym if needed.

6. Repeat steps 4 and 5 until satisfied.

When the *.asm file is in acceptable form, it is now time to carefully analyze the symbols
created by ReSource65.

Each symbol has the form L0NNNN, where the Ns stand for a 4-digit hexadecimal memory
address preceded by a leading zero. The symbol naming convention preserves uniqueness of
every address and makes identification of ReSource65 labels easy, even with editor search
functions.

The assembler source file begins with a list of symbolic labels which are not found in the
body of the program. All labels used within the program represent accessible target memory
locations inside the ROM2 memory space.

If any labels are found which belong in the ROM memory space, look for undetected data
areas or locations which were accessed using offsets. This is an opportunity to replace

2Note that the binary file could have come from a tape or disc file which loads into RAM.

4

the ReSource65 generated labels with more meaningful ones which represent the original
programmer’s methods.

Auxiliary documents and materials which might identify common external memory stor-
age locations or utility routines can be matched to the appropriate labels and used to
replace them. If this step takes place during the iterative creation of the source file using
ReSource65 the symbol file can be updated for further processing. Otherwise, you are now
at the point of fine-tuning the source file for use by the assembler.

2.3 Symbol Files

Symbols files contain user provided labels for important memory locations including starting
address for subroutines, messages, tables, ports, etc.

In some cases the programmer will have access to no prior information about these locations.
On occasion, a limited number of entry points or other locations may be known. In the
best cases, comprehensive memory maps or access to other versions of the same software
could be available. The basic rule is: the less you know about the code internals, the more
work you have to do to reconstruct a viable source code.

2.3.1 Syntax

Symbol files support the following file block control commands:

.code – the following address starts a code block.

.byte – the following address starts a block discrete bytes.

.word – the following address starts a block of word values.

.text – the following address starts a block of ASCII text.

A typical symbol file will alternate control commands as in the following example.

.code $c000

.byte $c433

.code $c480

.word $c624

.code $c626

5

In addition block control commands, you may add symbolic labels for any discrete memory
address as in the following example.

ptr = $80
temp = $92
scrn = 32768
errmsg = $c080
porta = $d840
prtchr = $ffef

These addresses may refer to storage locations, subroutine entry points, string start ad-
dresses, ports, etc. The addresses may be entered in decimal or in hex with a $ prefix.

2.3.2 Sample File

Probably the easiest way to explain the evolution of a symbol file is to go through an
example. The sample.bin file provided with this application will serve as a vehicle. It
represents a small amount of code which occupies the lower part of a 256-byte memory
block.

The first step is to run ReSource65 on the sample file to produce sample.h65 and sample.asm.

This can be with the following command line:

C:[path]>resource65 sample.bin

When prompted for the starting location, enter c000.

The resulting sample.asm file can be assembled ‘as is’ with cbA65,3 or with minor mod-
ifications to suit other assemblers. But we would like to improve the readability of this
preliminary source code version.

The next step is to create a sample.sym file which guides the process through code and
data. Examine the file sample.asm and notice that there is one labeled address which is
within the ROM memory space. This address bears the label L0C047.

Looking in the assembler file around this location we see that there are several invalid
opcodes detected. The first, at L0C03A is clearly the start of a jump table or message block
or some other data.

3Note that ReSource65 retains the original code and data bytes as comments unless the command line
switch -n was added.

6

Using your favorite text editor, create a new file named sample.sym and enter the following
lines:

.code $c000

.byte $c03a

Save this file in the same folder as the other files, and run ReSource65 on sample.h65.
This time you will not be prompted for the starting location. The reason is that the H65
file has that information already placed in the file.

An examination of the new sample.asm file reveals that the data starting at L0C03A is
consistent with the ASCII character set. If you are familiar with ASCII codes you can
verify this by eye, but in any case you can replace the .byte designator in the sample.sym
file with .text to confirm it.

It is also clear that the ROM has been filled with zeros following the data. You can label
this fill block by revising the sample.sym file as follow:

filler = $c054
.code $c000
.text $c03a
.byte $c054

After a little more sleuthing we conclude that location $80 in page zero holds a pointer
and, from previous knowledge of the system in which the ROM is be place, location $8000
is the start of screen RAM. We can add labels for these to the sample.sym file so it looks
like this,

ptr1 = $80
scrn = $8000
rdymsg = $c03a
scrnmsg = $c047
filler = $c054
.code $c000
.text $c03a
.byte $c054

where I have also added labels for the two strings.

Running ReSource65 in sample.h65 incorporates these improvements in the resulting
sample.asm file. At this point, ReSource65 has done about all it can, leaving the ad-

7

ditional improvements in the hands of the programmer. It is now time to focus on the
directly modifying the assembler source file.

Here is one result of further analysis and improvement of the reconstructed source file.

8

; sample.h65, ReSource65: v 0.91a, Mar 7 2008
ptr .equ $0080
scrn .equ $8000
dostr .equ $ffe1

.org $C000
ldx #$77 ; C000 A2 77
lda #$00 ; C002 A9 00

clrscr sta scrn,x ; C004 9D 00 80
sta scrn+120,x ; C007 9D 78 80
sta scrn+240,x ; C00A 9D F0 80
sta scrn+360,x ; C00D 9D 68 81
sta scrn+480,x ; C010 9D E0 81
sta scrn+600,x ; C013 9D 58 82
sta scrn+720,x ; C016 9D D0 82
sta scrn+840,x ; C019 9D 48 83
dex ; C01C CA
bpl clrscr ; C01D 10 E5
ldx <scrn ; C01F A2 00
stx ptr ; C021 86 80
ldx >scrn ; C023 A2 80
stx ptr+1 ; C025 86 81
ldy #$0C ; C027 A0 0C
lda scrnmsg,y ; C029 B9 47 C0

@ sta (ptr),y ; C02C 91 80
dey ; C02E 88
bpl @B ; C02F 10 FB
lda rdymsg ; C031 AD 3A C0
ldy #$0C ; C034 A0 0C
jsr dostr ; C036 20 E1 FF
rts ; C039 60

rdymsg .text "System ready."
scrnmsg .text "Screen clear."
filler .align 256,0

.end

This will assemble with cbA65 and produce a binary file identical to the original.

Although no comments have been placed in this source file, minimal commenting would not
take much additional analysis or effort. Clearly, access to any source or system documen-
tation would be helpful.

9

Chapter 3

Theory of Operation

ReSource65 uses simple strategies to translate the binary file into readable form, but the
implementation details deserve some clarification and comment.

3.1 The Reconstruction Process

In the first pass through a binary file, ReSource65 assumes that the entire memory block
consists of code and no data. Generally, this is poor assumption, but it yields information
which is valuable in partioning the memory space into reasonable sections.

On examination of the first attempt at reconstructing a source file, ı.e., the *.asm file, there
are likely to be a number of invalid opcodes detected. These are indicated by *** where a
processor mnemonic would normally be found. Since the byte values at these locations are
not valid opcodes, the must represent some kind of data.

ReSource65 provides assistance to the programmer in the following ways:

• Disassemble as code blocks,

• Add the original code values as comments,

• Assign symbolic labels to all reference memory addresses,

The task of analyzing the data in the neighborhood of these invalid opcodes is part of the
programmer’s burden. An educated guess as to where the code block ends, the data block
starts, and the code restarts are all that is needed to uncover the next level of detail.

10

Creating a symbol file, which must have the same name as the binary file but with a .sym
extender, is the next step in the process.

The symbol file guides ReSource65 through the binary file by designating the start of
regions containing code or data. Data can be further specified as text, bytes or words. The
directives corresponding to the recognized types are .code, .text, .byte and .word. An
internal mode switching algorithm is used to assure that the text sent to the assembler
source file is appropriate.

The symbol file also allows the programmer to provide meaningful names to memory lo-
cations. These user supplied names and locations will override any internally generated
labels.

Running ReSource65 and improving the symbol file constitute the interative process used
to generate an acceptable assembler language source file.

3.2 Source File Structure

3.2.1 External Address List

ReSource outputs a list of all external addresses identified by disassembling code regions or
by processing any user provided labels. The *.asm file associates the name with its address
using the .equ directive. Most assemblers accept this convention.

The list of external addresses is sorted by ReSource65 in order of increasing memory address.

Once the programmer identifies the role of any of these addresses, he can replace the au-
tomatically generated label with a more meaningful one by simply including a line such as
prtline = $ff2e in the symbol file. For these equates ReSource65 uses the equal sign.

3.2.2 ROM Contents

After the list of external names and addresses, ReSource65 place an .org statement in the
output file. This statement is followed by the address which was given during the first pass
for the start of the ROM code.

Although not every binary object file can be completely analyzed and understood without
external support documents, the work product is often useable for making modifications,
corrections and additions to the original code.

11

Following the .org statement ReSource65 will interleave blocks of disassembled code with
data, as specified in the symbol file.

3.3 Conclusion

Like other programmer’s tools, ReSource65 has capabilities and limitations. There is cer-
tainly no substitute for the kind of intelligent analysis which an experienced programmer
can bring to a reconstruction problem. The extent to which complex mental processes can
be emulated by mechanical devices is a subject for Artificial Intelligence, and progress has
been dismally slow.

Nevertheless well designed tools can make the programmer’s job much easier. It is hoped
that ReSource65 will find its place as one of those tools.

12

