
April 28, 2013

Designing a Divide-by-Three

Logic Circuit

c⃝2005, C. Bond. All rights reserved.
http://www.crbond.com

Purpose

This document provides a detailed description of each step in the design of an
efficient divide-by-three logic circuit. The methods used are those presented
in the document titled “Advanced Logic Design Techniques in Asynchronous
Sequential Circuit Synthesis”, C. Bond, 2002, available from the author at
the above website.

Several unique signal requirements are imposed on the design, and the pre-
viously published methods are freely adapted to yield a solution which is in
some sense optimal.

Before proceeding, be advised that most logic designers, when confronted
with a need for a divide-by-three circuit, will opt for a design which uses
flip-flops or shift registers and supporting logic. The thought of designing
from gate level up is usually not the first one that comes to mind. Building
circuits with higher level elements generally speeds the design process and
simplifies troubleshooting. That approach is completely workable and really
needs no defense.

Nevertheless, gate level designs offer opportunities for minimization, opti-
mization and control that may recommend them over higher level design
methods. Here is one solution.

Problem Statement

For this divider we are given a clock signal which is a simple, symmetrical
square wave, T . This clock is the only input to the circuit. The output
of the circuit consists of three, symmetric overlapping square waves whose
frequency is one third that of the input. The circuit will be implemented
with NAND gates, although the problem statement could be satisfied with
other devices.

Constructing the Flow Table

The design process begins with the construction of a flow table expressing
the problem statement in simplified form, as in Table 1.

1



T

Q1

Q2

Q3

Figure 1: Divide-by-Three Timing Waveforms

T
0 1 Q1,2,3

(1) 2 0 0 0
3 (2) 0 0 1
(3) 4 0 1 1
5 (4) 1 1 1
(5) 6 1 1 0
1 (6) 1 0 0

Table 1: Flow Table for Divide-by-Three

This table illustrates some design techniques which exploit properties of the
particular problem. For example, the required output states yield unique
combinations for each row of the table. These can be directly equated to
internal variables, as will be shown later. Stable states are indicated by
parentheses.

There are six rows in the table, indicating the presence of three internal
variables,1 so the assignment of output values to internal states is direct. No
row merging will be required using the given flow table.

Replacement of the enumerated stable state entries in the table by the cor-
responding secondary variables results in Table 3. Note that the structure of

1Recall that 2n states require n internal variables.

2



T
y1 y2 y3 0 1

0 0 0 (1) 2
0 0 1 3 (2)
0 1 1 (3) 4
1 1 1 5 (4)
1 1 0 (5) 6
1 0 0 1 (6)

Table 2: Secondary Assignments for Divide-by-Three

the original flow table simplifies the mapping.

T
y1 y2 y3 0 1
0 0 0 (000) 001
0 0 1 011 (001)
0 1 1 (011) 111
1 1 1 110 (111)
1 1 0 (110) 100
1 0 0 000 (100)

Table 3: Flow Table with Boolean State Entries

Deriving the Circuit Equations

The above table is not only a complete problem statement, it is also a com-
plete solution description. The circuit behavior is defined by the changes in
secondary variable values following motion from cell to cell in the table.

As a first step toward deriving the circuit equations, split the table into
individual elements, one for each secondary variable.

In these tables we have abandoned the special notation for stable states.
They are not necessary in the derivation of equations, but may (will) become
useful in optimizing the preliminary solutions or in analyzing and eliminating
critical races and hazards.

In keeping with the conventions used in the previously cited document, the
devices which correspond to secondary variables are identified with upper
case labels, such as Yn, and the outputs associated with those devices are
identified with lower case labels, such as yn.

3



T
y1 y2 y3 0 1
0 0 0 0 0
0 0 1 0 0
0 1 1 0 1
1 1 1 1 1
1 1 0 1 1
1 0 0 0 1

Y1

T
y1 y2 y3 0 1
0 0 0 0 0
0 0 1 1 0
0 1 1 1 1
1 1 1 1 1
1 1 0 1 0
1 0 0 0 0

Y2

T
y1 y2 y3 0 1
0 0 0 0 1
0 0 1 1 1
0 1 1 1 1
1 1 1 0 1
1 1 0 0 0
1 0 0 0 0

Y3

Table 4: Split Internal State Tables

The equations are taken directly from Table 4 by simply picking up all 1’s,
as is done with any combinational logic table. For our design, the equations
for the secondary variables are:

Y1 = y1 · y2 + T · y1 + T · y2 (1)

Y2 = y2 · y3 + T · y2 + T · y3 (2)

Y3 = y1 · y3 + T · y1 + T · y3 (3)

Clearly, there are many ways to regroup the terms in each equation, depend-
ing on the need for emphasizing common sub-expressions or minimization.
This will be taken up in the next section. For now, note that the minterm
redundancy in this representation supports smooth transitions along rows
and columns.

Implementing the Circuit

A straightforward reduction of the equation minterms to NAND gates will be
demonstrated. This implementation only succeeds if a few auxiliary signals
which are not part of the original specification are available. Such signals
may require additional gates.

Direct implementation of the minterms of the equations for variable Y1 leads
to a simple circuit, such as in Figure 2. No special implementation techniques
are involved in this circuit.

Note that the output device, Y1 (upper case), is equivalent to the the signal
y1 (lower case). The distinction is purely for convenience and there is a one-
to-one correspondance between every device and its output. Furthermore,
the use of yn for signal identification is simply a convention. In fact, Y1 (or

4



�

�

�

�

•

•

•

•

T

Y1 y1

y2

Figure 2: Direct Implementation of Y1

y1) is identified with the signal Q1 in the problem statement. The variables
Y2 and Y3 can be treated in the same way. For the (almost) complete circuit,

�

�

�

�

�

�

�

�

�

�

�

�•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

T

T

Y1

Y2

Y3

Q1

Q2

Q3y1

y1 + T

y1 + y2

y2 + T

y3 + T

y1 + T

Figure 3: First (Partial) Implementation of Divide-by-Three

5



we have Figure 3, above.

We refer to this as a ‘partial’ implementation because of the presence of two
signals which were not part of the original specification, T and y1. These
signals could, of course, be generated immediately by simply connecting in-
verters to T and Y1. A full analysis reveals that the circuit will function
properly if those devices are included for this purpose.

Note that if the user wishes to implement the circuit in a PLD, simply enter-
ing the equations into the source file are all that ia necessary. Implementing
the equations with other devices or gates is possible. Optimization of any
initial implementation is dependent on specific and can be managed using
techniques presented in the above cited paper.

Optimization

The original version of this paper had a section on optimization of the above
schematic. Unfortunately, the resulting schematic contained errors so a sec-
ond release deleted that section. In this third revision, the correctly opti-
mized circuit is included. The optimization consists of eliminating the auxil-
iary signals, T and y1, by canceling literals with available signals. The result
is shown in Figure 4

Note that cancellation introduces races and hazards that can cause a mal-
function. It is imperative to trace the signal paths to assure proper operation.
It also generally increases the delay between a trigger event and the follow-
ing stable state. Such increases limit the maximum frequency the circuit
can handle. This can be determined by tracing the signal flow paths or by
simulation.

Further Considerations

Although the circuit as it stands fully meets the stated requirements, there
are other issues a conscientious designer should consider. For example, we
have not made device fan-out an issue in the specification or the design. The
viability of our result should be confirmed for the logic family in use.

Another issue is the existence of ‘forbidden’ states. There are eight com-
binations of Q1, Q2 and Q3 possible, but we have only used six of them –
relegating the others, by omission, to don’t cares. That leaves two states un-
accounted for. A conservative design would include the examination of the
behavior of the circuit in the event an unknown state occurred, and assure
that the circuit would move into a know state in all cases. This is an exercise
for the reader and can be done with the methods in the cited paper.

Finally, a master reset or initialization of the circuit may be desirable. Again,

6



�

�

�

�

�

�

�

�

�

�

�

�
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

T

Y1

Y2

Y3

Q1

Q2

Q3

y1 + T

y1 + y2

y2 + T

y3 + T

y3 + y1

y1 + T

Figure 4: Optimized Implementation of Divide-by-Three

the cited paper shows methods for ‘forcing’ a multistate circuit into a known
state and guidelines for determining the least number of connections required.

Simulation

Here you will find a screen shot of a simulation of the circuit. The input ’T’
and outputs of each gate are shown.

7



8


