
An Efficient and Versatile Flood Fill Algorithm

for Raster Scan Displays

by C. Bond, 2011
www.crbond.com

Contents

1 Background 5

2 Preliminary Considerations 6

2.1 Objectives . 6

2.2 Overview . 6

3 Architecture of Implementation 7

4 Basic Algorithm 8

4.1 Top Level Calling Routine . 8

4.2 Low Level Routines . 9

4.3 Mid-level Routine . 13

4.3.1 Stack Management . 14

5 Variations 18

5.1 Flood-Under . 18

5.2 Flood with Image Transfer . 18

5.3 Flood with Gradient Fill . 19

5.4 Tiled Fill . 19

5.5 Re-Border . 19

6 Conclusion 19

2

APPENDIX 20

A Assembler Language Scan And Fill 20

B Proof of Performance 23

B.1 The Proof for Fill Up . 23

B.1.1 Case 1. 24

B.1.2 Case 2. 24

B.1.3 Case 3. 24

B.2 The Proof for Fill Dn . 25

B.3 Stack Management . 25

B.4 Summary . 25

List of Figures

1 Template for 4-way Connectivity 5

2 Filled Surface with Diagonal Boundaries 5

3 Scanline Legend for Current Segment 7

4 Pixel Properties for no fill Conditions on y + 1 10

5 Pixel Properties for Longest Simple Fill on y + 1 11

6 Possibly Incomplete Fill on Line y + 1 11

7 Possibly Incomplete Fill on Line y and y + 1. 11

3

8 Possibly Incomplete Fill on Line y. 12

9 Scan and Fill Algorithm for Fill-Surface. 13

10 Push Up Method . 15

11 Stack Pop Method . 16

12 Fill Up Method . 16

13 Flood Fill Method . 17

14 Untested Segments on y During Fill Up. 23

15 Untested Pixels on Line y + 1 During Fill Up 24

4

1 Background

There are several types of flood fill algorithms1 discussed in graphics litera-
ture. The problem to be solved involves identification of contiguous pixels
on a raster display and re-coloring them according to certain chosen con-
straints. This paper addresses a method for filling a region under the 4-way
connectivity rule, which is illustrated in Fig. (1).

x

y

Figure 1: Template for 4-way Connectivity

This rule holds that a pixel, such as the center pixel at (x, y) in the figure,
should be filled if one or more of its four adjacent vertical or horizontal neigh-
bors is filled. Diagonal pixels are not considered connected in this scheme. If
diagonal neighbors are considered connected, an 8-way connectivity results.
The practical difference is this: if a diagonal line on a raster display can serve
as a barrier separating a filled region from an unfilled one, 4-way connectivity
is implied. Fig. (2) shows an example.

0
0

Figure 2: Filled Surface with Diagonal Boundaries

1Sometimes referred to as the painter’s algorithm or the seed fill algorithm.

5

2 Preliminary Considerations

2.1 Objectives

The development of the method described in this paper was guided by a
specific set of requirements. Briefly, these are:

Correctness It was a top level requirement that the method correctly ex-
ecutes the flood fill under all conditions. It must fill every pixel which is
reachable from the starting point and not overwrite any other pixel. This
can be a very demanding requirement in complex work spaces. For example,
spiralled geometries or regions containing text must be handled correctly.

Efficiency This has two aspects. One, the implementation should make
modest use of system resources. Some fill algorithms are recursive at the pixel
level and may require prohibitive stack space. Two, each filled pixel should
be visited only once. This requirement has a benefit beyond performance.
Namely, if each filled pixel is only visited once, it becomes possible to fill
with arbitrary colors such as transferring an image from another bitmap into
the filled region. This may not be possible with methods which revisit pixels.
Border pixels may be visited from either side, but that does not affect any
of the fill methods described here, except the re-bordering option discussed
later.

Note that elegance was not a driving requirement. Some published flood fill
algorithms are quite elegant, but may be very resource intensive or slow.

2.2 Overview

The chosen method for filling consists of finding line segments which contain
fillable pixels with termination end points. It lends itself to very efficient
code, particularly in assembler language, and only requires each tested and
filled pixel to be visited once. Since a completed line segment is processed in
each call to the scan and fill routine, the segments are also only visited once.

6

We will use a stack2 to hold pending operations, but the method is less stack
intensive than pixel by pixel methods.

— Filled pixel

— Border pixel

— Unknown pixel

L R

L — Left segment endpoint

R — Right segment endpoint

y — Line number

y

Figure 3: Scanline Legend for Current Segment

Since this paper relies heavily on graphic representations of the implementa-
tion details, a standard for illustrating data types is needed. Such a standard
is suggested by the legend in Fig. (3). As the exposition continues, addi-
tional identifiers will be defined, but for the moment, this filled segment of a
scanline shows the plan.

3 Architecture of Implementation

In order to make best use of system resources, the author suggests that the
low level scan and fill routines be implemented in assembler language. There
are several reasons for this, but the primary motivation is to take advantage
of proximity relations in memory accesses. The bitmap upon which the
filling operations are performed is an array of contiguous memory locations
and higher level languages do not always streamline consecutive accesses to
adjacent locations.

The line scan and fill routines can be called by an efficient higher level lan-
guage with little performance penalty. For ease of coding, debugging and
maintenance, C++ is a good choice.

Hence, we divide the flood fill algorithm into the following sections:

2Actually, two stacks are used, as will be explained later.

7

Section Purpose Language
1 Set parameters and options C++
2 Logical decisions and stack management C++
3 Scan and fill routines assembler

4 Basic Algorithm

There are two standard forms of the flood fill algorithm. One is to fill a region
of a specified color with a replacement color. This method is commonly used
to color a background or to create one for overlayed graphics or text. This
form only colors pixels of the selected color with a new color, stopping at
every pixel which differs from the selected one.

A second form is to color every pixel in regions stopping at a selected border
color. This form is used to wipe out all text or graphics within a specified
boundary.

Both types are common, and both can be implemented with the method
presented. In addition, several uncommon or novel fill strategies will be
given.

4.1 Top Level Calling Routine

The highest level call must provide the following information: 1) the type of
fill requested, 2) the starting pixel in the bitmap, 3) the fill parameters. For
the simplest cases the type of fill will be fill-surface, or fill-to-border.

In the event that a fill-surface is requested, the parameters include the color
of the surface to fill and the replacement color. Of course, these should be
different. The lower level routines will test the starting pixel to determine
whether it has the surface color, and will return with no action if is not.

For a fill-to-border, the parameters include the fill color and the border color.
They must be different. Here the lower level routines will test the starting
pixel to determine whether it is the border color, and will return to the caller

8

with no action if it is.

In either case, the other parameters include a pointer to the bitmap, the
coordinates of the starting pixel and the number of rows and columns in the
bitmap. A typical calling convention in C++ might look like this:

void flood_fill(Byte *bmp[],int xc, int yc, int rows,

int cols, short bcolr, short fcolr, int FOPT);

where an 8-bit bitmap is specified with starting pixel (x, y), number of rows,
rows and number of columns, cols. Generally, rows − 1 is the last row
and cols − 1 is the last column in the bitmap because of 0-based indexing
in C++. These values are required to limit the scanning operations so no
runaway memory searching takes place. The parameter bcolr is the surface
or border color, and fcolr is the fill color. FOPT is the parameter which
specifies the type of fill requested, and is used to distinguish between bcolr

as a background or border color.

It might be desirable to return a value to the calling routine which can signal
an error condition or failure to fill. Also, an additional color may be required
for specialized fill operations. Further, if the fill involves transferring pixels
from another image an additional bitmap pointer may be needed. Other
ways of managing the calls are also possible. For example, a structure could
be passed which contains options, auxiliary colors, pointers, etc.

4.2 Low Level Routines

It is preferable to discuss the lowest level operations before the mid-level
C++ routines are explained. This is because there are a number of special
conditions which may occur and which require handling at higher levels. In
some cases, further scan and fill requirements are uncovered which are used
to guide the stack handler.

The scan and fill procedure is given a line descriptor which identifies the
line segment to be processed. The descriptor consists of three integers: the
line number (y-coordinate), the left end of the search region and the right

9

end. The latter two integers are x-coordinates which we will identify as L

and R. The limits are those of an adjacent line with y-coordinate one more
or one less than the current line. The endpoints of any segment found are
returned to the caller for further processing as Lnew and Rnew. The special
case which arises when no fillable pixels are found is flagged by returning
a value of Lnew which is greater than Rnew. Otherwise, Lnew ≤ Rnew.
Lnew = Rnew when a single pixel is filled.

The pixels are examined starting from the left end L and any fillable pixels
contiguous in the region are filled until termination points on the left (Lnew)
and right (Rnew) are reached. As will be seen, the rightmost termination
point may stop the search for candidate pixels before reaching R − 1, and
this is one of the conditions which must be handled.

Note that there may be other fillable segments along the line, before or after
the current segment boundaries, but that these are not visible to the routine
at this point.

It’s easiest to understand the various cases which can occur by examining
graphic illustrations. These will be shown and briefly discussed in the fol-
lowing paragraphs. We will consider the various situations which might arise
when we have filled a segment and are examining an upper neighbor for
fillable pixels.

y
y + 1

L R

Figure 4: Pixel Properties for no fill Conditions on y + 1

In the figure, the lowest line, y, contains a previously filled segment. The
line above, y + 1, has just been scanned for fillable pixels. If all possible
adjacent pixels have been tested and no fillable ones have been found, the
region covered is a boundary. In this case, Lnew > Rnew is returned to the
caller. It doesn’t really matter what specific values are chosen, only that the
inequality is satisfied.

A simple fill is one which does not uncover additional candidate search re-
gions. For simple fills, Lnew > L− 2 and R − 2 < Rnew < R + 2.

10

y
y + 1

L R

Figure 5: Pixel Properties for Longest Simple Fill on y + 1

Since only one filled segment is completed during any call to the scan and fill
routine, complicated geometries may require additional calls with the same
line number, but differing L and R values.

For example, a fill which terminates on the right before reaching pixel R−1,
leaves critical pixels untested. This case is illustrated in Fig. (6). It is
detected in the stack handler by checking whether Rnew < R − 1.

y
y + 1

L R

Figure 6: Possibly Incomplete Fill on Line y + 1

Here the magenta pixels remain untested during the current scan and fill, and
a descriptor for this segment must be saved on the stack for future processing.

y
y + 1

L R

Figure 7: Possibly Incomplete Fill on Line y and y + 1.

In Fig. (7) we find a case where candidate pixels are uncovered in the current
line as well as the previous one. The cyan pixels were untested and a de-
scriptor must be saved. This situation is what motivated the creation of an
“up” stack and a “down” stack to account for the direction of adjacent line.3

For our example, untested regions in the current line (which is higher than
the previous line) will be examined later and if any fillable pixels are found,
they will be filled and a descriptor will be stored on the up-stack. Untested

3It is also possible to extend the line descriptor to include a direction flag and use a
single stack.

11

regions on the previous line may include fillable pixels, in which case they
will be filled and further processing will continue downward.

y
y + 1

L R

Figure 8: Possibly Incomplete Fill on Line y.

In this case, we need to generate a descriptor for a segment on the previous
line. The untested pixels are shown in tan. It is possible for uncovered
segments to exist at either end of the previous line, so one or two descriptors
may be placed on the down-stack by the stack handler.

Pseudo-code for Scan and Fill The following code-like algorithm de-
scribes the operation of a scan and fill module for a fill-surface flood fill. It
is very concise (and hard to read), but at least it is fairly language indepen-
dent. It uses C/C++ increment and decrement operators and bracket array
notation to indicate position along a line.

The program should be entered with the following parameters:

p = pointer to bitmap,

y = current line number,

L = left end of previous segment,

R = right end of previous segment,

Lnew = pointer to storage for left end,

Rnew = pointer to storage for right end,

bcolr = background (surface color),

fcolr = fill color,

xmax = number of columns-1,

ymax = number rows-1,

idx = local variable or register for index.

The program is shown in Fig. (9). The operation of this routine is straight-
forward. Namely to find and fill the first fillable segment in the region passed
to it, and return the endpoints in Lnew and Rnew if one is found, or return

12

1) idx = L. Initialize index

2) if y[idx] <> bcolr goto 9), Test starting pixel

3) y[idx] = fcolr. Fill it

4) do scan_and_fill y[idx--] until Continue to left end

y[idx] <> bcolr or idx = 0.

5) Lnew = idx, idx = L. Left found, start right

6) if idx = xmax goto 8). If right end, we’re done

7) do scan_and_fill y[idx++] until Continue to right end

y[idx] <> bcolor or idx = xmax.

8) Rnew = idx, return. Save and exit

9) if idx = R goto 13). No pixels found

10) do scan_and_fill y[idx++] until Continue to right

y[idx] = bcolr or idx = R.

11) if idx = R goto 13). No pixels found

12) y[idx] = fcolr, i++, goto 5. Fill it and continue

13) Rnew = idx, Lnew = idx+1, return. No pixels, save and exit.

Figure 9: Scan and Fill Algorithm for Fill-Surface.

Lnew > Rnew otherwise. Nevertheless, simple as this is to state, it does
involve considerable logic to execute all possible cases correctly.

4.3 Mid-level Routine

The mid-level module carries the burden of calling the scan and fill routines,
identifying further pending operations and maintaining a stack. Much of the
logic required to support viable and versatile flood fills occurs here.

There are several modules at this level and we will begin by discussing the
stack and stack management routines. This is the best place to start because
the stack handler is so tightly coupled to the scan and fill routines.

13

4.3.1 Stack Management

Several global variables are used to hold critical stack values. These are:

up_stack[STACKSZ] = stack used for upward scanning

dn_stack[STACKSZ] = stack used for downward scanning

ustkidx = running index into up_stack

dstkidx = running index into dn_stack

umax = maximum value used by ustkidx

dmax = maximum value used by dstkidx

xmax = number of columns-1

ymax = number of rows-1

lnew = left pixel location on current segment

rnew = right pixel location on current segment

L = left pixel location on previous segment

R = right pixel location on previous segment

y = line number of segment

FOPT = option for type of fill

Note that the descriptor values L, R and y are available to all routines in
the module.

When the flood fill module is entered, the stacks must have memory allocated.
L, R and y are given values returned by the scan and fill routines. The other
values are initially set to zero.

During a flood fill run, three values are pushed or popped at a time: L, R,
and y. These are descriptors for a segment identified for future processing.

When debugging, umax and dmax may be monitored to get good estimates of
stack usage. A starting value of the STACKSZ for gaining confidence in the
program should be about 2000. Note that there may be multiple segments
along any line, especially when flooding text areas.

Pseudo-code for Stack Management The modules required support
repetitive processing of line segments as well as simple pushing and popping.

14

Prototypes in C/C++ might look like this:

void push_dn(int lp,int rp,int yp);

void push_up(int lp,int rp,int yp);

int pop_stack();

void fill_up(int FOPT);

void fill_dn(int FOPT);

The operation of each module is described in the following paragraphs.

1) test for sufficient stack space.

2) if no more room goto 6.

3) push lp, push rp, push yp.

4) update ustkidx.

5) update umax.

6) exit.

Figure 10: Push Up Method

The push_dn(lp,rp,yp) routine is similar to push_up(lp,rp,yp). It may
be desirable to return a value to the calling program if there is insufficient
stack space. This is a case where the designer may choose to simply abort
further action silently or with error notification.

The pop_stack() method manages both stacks and returns a value indi-
cating the direction, 1 for upward unstacking, −1 for downward unstacking
and 0 for empty stacks. The fill_up(fopt) routine handles flood filling in
the upward direction. It calls the specific scan and fill method given by the
parameter fopt. The following shows how it works. Again, the corresponding
fill_dn(fopt) method is similar. These are the routines which identify line
segments that need further processing.

The linefill(fopt) routine is a simple switch statement which calls the desired
scan and fill method and passes the appropriate parameters to it. On return,
any fillable pixels have been processed and lnew and rnew are available.

15

1) if ustkidx > dstkidx goto 6)

2) if dstkidx = 0 return 0.

3) pop L, R and y from dn_stack.

4) update dstkidx.

5) return -1.

6) pop L, R and y from up_stack.

7) update ustkidx.

8) return 1.

Figure 11: Stack Pop Method

1) if y>ymax-1 return.

2) y++.

3) call linefill(fopt).

4) if lnew > rnew return.

5) if lnew < L-1 push_dn(lnew,L-2,y).

6) if rnew > R+1 push_dn(R+2,rnew,y) goto 8).

7) if rnew < R-1 push_up(rnew,R,y-1).

8) R = rnew, L = lnew, goto 1)

Figure 12: Fill Up Method

A considerable amount of logic has been implemented in the previous code
blocks. All that remains is to code the highest level call, whose C/C++
prototype, as previously shown, looks like:

void flood_fill(Byte *bmp[], int xc, int yc, int rows,

int cols, short bcolr, short fcolr, int FOPT);

16

1) if parameters are invalid return. no action.

2) allocate stack memory.

3) initialize globals,

set lnew=rnew=xc,y=yc,

ymax=rows-1,xmax=cols-1.

4) call linefill(FOPT). kick start fill.

5) if starting pixel invalid goto 10).

else lnew and rnew are set.

5) push_dn(lnew,rnew,y), save segment for down scan

L=lnew,R=rnew, since we start scanning

fill_up(FOPT). upward.

5) dir = pop_stack(). let stack handler control

7) if dir = 0 goto 10) completion.

8) if dir = 1 fill_up(FOPT),

else fill_dn(FOPT). loop until done.

9) goto 5)

10) deallocate memory and return.

Figure 13: Flood Fill Method

17

5 Variations

Several different flood fill routines are described in this section. Some of them
can be combined to permit customizing more elaborate filling schemes.

5.1 Flood-Under

The flood-under variation permits the user to flood fill a region without eras-
ing certain graphic objects. For example, a region containing text may have
the background filled without changing any of the text characters.

This interesting option differs from ordinary flood filling around text in that
it properly fills closed loops in the text, such as those in ‘a’, ‘B’, ‘d’, etc.
Standard flood fills leave these regions unfilled.

Flood-under is accomplished by passing a color to the scan and fill routines
which will be ignored. That is, as the line is scanned, this color will stay
on top because the scan routine skips over each matching pixel. Scanning
continues until suitable termination conditions occur. Skipped pixels are
treated as if they were filled in so the region containing filled or skipped
pixels form the complete segment.

5.2 Flood with Image Transfer

In this version pixels are filled by transferring pixels from another bitmap,
perhaps an image of some kind. It requires passing a pointer to the other
bitmap, which would normally have the same dimensions. Thus in assembler
language one could create an index used as a pixel pointer which facilitates
moving a pixel from one bitmap to the other.

Recall that since each processed pixel is only tested once, the bitmap may
consist of arbitrary colors, including border colors or skip colors. This is one
strong point of the method outlined in this paper.

18

5.3 Flood with Gradient Fill

One method for creating gradients is to construct a 2n-byte buffer a contain-
ing a range of color values this is passed to the scan and fill routines along
with a mask consisting of n 1’s. At each point to fill the mask is AND ed
with the current x or y position to index into the color buffer for the current
value.

Again, there are no restrictions on the colors used in the buffer.

5.4 Tiled Fill

Just as gradients can be formed in either direction, tiles can be transferred
from small bitmaps. If the previous method using a mask is used, the tile
should have dimensions that are powers of 2.

5.5 Re-Border

Re-bordering can be done by simply re-coloring any border found. Since each
segment is completed in a single visit, the re-coloring will not interfere with
other segment fills. But note that border pixels may be visited from either
side, so this option is most easily implemented with the fill-surface method.

6 Conclusion

A comprehensive flood fill algorithm has been presented. Complete details for
implementation in any computer language are given. A number of hitherto
undocumented filling options are supported and described. Demonstrations
are posted at:

http://www.crbond.com

19

APPENDIX

A Assembler Language Scan And Fill

For completeness in the exposition, the author includes an assembler lan-
guage implementation of the fill-surface routine. Note that in this module
the symbol bcolor has been replaced by scolr. This was done to simplify focus
on the type of fill being performed.

The code was written for Borland TASM32, but is easily ported to other
assemblers. The bitmap origin (0, 0) is at the lower left corner.

.586

.model flat,C

.code

locals

public fill_surf

;

; "C" calling conventions:

;

; void fill_surf(Byte *lptr[],int y,int xmax,int l,int r,

; int *lnew,int *rnew,short fcolr,short scolr);

;

; ’fcolr’ is the fill color. ’scolr’ is the color of the

; background surface to fill. Any other color is considered a

; boundary color, and will terminate the spread of the filled line.

;

; Inputs:

;

; lptr - pointer to 256-color bitmap

; y - row number for current scanline fill

; xmax - maximum ’x’ value (bitmap width-1)

; l - leftmost pixel of adjacent filled line segment

; r - rightmost pixel of adjacent filled line segment

; fcolr - fill color (0-256)

20

; scolr - color of surface to fill (0-256)

;

; Outputs:

;

; lnew - leftmost pixel of current filled line segment

; rnew - rightmost pixel of current filled line segment

; **** - the filled pixels, if any, on the current

; row of the bitmap

;

; NOTES:

; - If no pixels on the current line can be filled, the

; returned value of ’lnew’ is greater than ’rnew’

; (lnew > rnew).

; - ’fcolr’ must be different from ’scolr’.

; - The fill routine is bounded on the left by 0

; and on the right by ’xmax’.

;

; --

fill_surf proc

arg lptr:ptr,y:dword,xmax:dword,l:dword,r:dword

arg lnew:ptr,rnew:ptr,fcolr:word,scolr:word

uses ebx,esi,edi

mov esi,lptr ; esi points to bitmap

mov ebx,y

mov esi,[esi+4*ebx] ; esi now points to row ’y’

mov ecx,l ; ecx has offset to ’L’

mov ax,fcolr

mov dx,scolr

cmp byte ptr [esi+ecx],dl ; check starting pixel value...

jne @@scanrt ; ...for direction of initial search.

mov byte ptr [esi+ecx],al ; replace color and extend to left

cmp ecx,0 ; check for lower bound for ’x’

je @@foundlft

@@lp1:

cmp byte ptr [esi+ecx-1],dl

jne @@foundlft

mov byte ptr [esi+ecx-1],al ; fill left until left edge...

dec ecx ; ...or color barrier.

jne @@lp1

@@foundlft:

mov edi,lnew ; left boundary has been found

mov [edi],ecx ; ’lnew’ now has left edge of line

mov ecx,l ; start search for right edge

mov edi,maxx

cmp ecx,edi

21

je @@foundrt

@@lp2:

cmp byte ptr [esi+ecx+1],dl

jne @@foundrt

mov byte ptr [esi+ecx+1],al ; fill right until right edge...

inc ecx ; ...or color barrier.

cmp ecx,edi

jne @@lp2

@@foundrt:

mov edi,rnew

mov [edi],ecx ; ’rnew’ now has right edge of line

ret

@@scanrt:

mov edi,r ; entry point is not a left bound.

cmp ecx,edi

je @@noline

@@lp3:

cmp byte ptr [esi+ecx+1],dl ; skip over pixel until surface

je @@foundlft2 ; color or right edge is reached.

inc ecx

cmp ecx,edi

jne @@lp3

@@noline:

mov edi,rnew ;update rnew ; no valid pixels to recolor.

mov [edi],ecx

mov edi,lnew ;update lnew

inc ecx

mov [edi],ecx

ret

@@foundlft2:

mov byte ptr [esi+ecx+1],al ; color left edge, save

inc ecx

mov l,ecx ; update reference location to current

jmp @@foundlft ; pixel and search for right edge

fill_surf endp

end

The fill-to-border routine is the same, except that the pixels are tested against the
border color and the opposite logic is applied.

22

B Proof of Performance

Here we present a proof that the flood fill algorithm described in this paper does
not visit any filled pixel more than once.

Recall that the first segment filled is the only segment which was not filled under
the control of fill up or fill dn. All other segments were either filled immediately
following the fill of an adjacent segment or were stacked for future processing.

At any time, either up-filling or down-filling is in progress. We wish to prove
that no filled segment will ever be visited more than once. This part of the proof
applies to the fill-surface method, but similar arguments can be devised for the
other methods described in this paper.

B.1 The Proof for Fill Up

The fill up routine at all times identifies candidate segments by testing the next
higher line within the current line segment boundaries or, if the current segment
is a border and non-fillable, by popping a new descriptor off the up stack. When
a border line is encountered and the up stack is empty, the routine returns to the
caller. Similar remarks apply to the fill dn routine.

There are only three situations which can occur where descriptors are stacked.
These have been identified earlier in the expositions as uncovered segments to the
right of the current line, or beyond the ends of the previous line.

To simplify the proof, we will restrict the discussion to the fill-surface method and
the fill up routine. Similar arguments can be made for the fill-to-border method
and identical ones to the fill dn routine.

As previously noted, the fill up routine operates until an upper border boundary is
reached and the up stack is empty. Keep this in mind as the discussion continues.

Fig. (14) suggests a situation which might be encountered when scanning and
filling upward. Here, both possible untested regions on the previous line have been
uncovered.

y
y + 1

L R

Figure 14: Untested Segments on y During Fill Up.

We will prove that these segments cannot have been previously filled.

23

B.1.1 Case 1.

Line y + 1 is the empty segment which has just been filled. Suppose that the
segment on the right (the tan pixels) in line y were already completely or partially
filled. If this condition occurs, it would mean that we will be revisiting filled pixels
during a flood fill operation. Now, the pixels would have had to have been filled
during fill up or fill dn. But they could not have been filled during fill up, because
if any of the pixels had been filled, line y + 1 would have been also immediately
filled in the next step, and therefore could not be part of the current scan and
fill operation. In other words, if the uncovered segment had been already filled
during fill up, the segment in line y + 1 would have not been stacked, but would
have been filled in contradiction to the assumption that we have just encountered
an empty segment here and filled it.

Therefore, if the tan segment had been previously filled, it must have been filled
during a fill dn sequence. But this could not occur either. If those pixels had been
filled during a fill dn they would have been identified during the fill of line y + 1,
and would have been filled during the fill dn sequence, again in contradiction to
the condition that we have only just now filled it during a fill up sequence.

B.1.2 Case 2.

Now consider the untested segment on the left (cyan pixels). We argue that this
segment could not have been filled during a fill dn operation, because if they had
been the current line, y + 1 would have also been filled, in which case it would
not have been encountered during a fill up. Don’t forget that when fill dn is in
effect, it will continue until it encounters a border and its stack is empty. But
these pixels could not have been filled during a fill up either, because if they had
been, the segment on line y + 1 would have immediately followed, contradicting
the condition that we just encountered it empty.

B.1.3 Case 3.

y
y + 1

L R

Figure 15: Untested Pixels on Line y + 1 During Fill Up

This last case deals with uncovered (magenta) pixels to the right of the current
line, y+1, and adjacent to a previous fill. We now argue that pixels in that segment
could not have been filled during a fill dn because if they had been, the segment
on line y would have been filled immediately during fill dn and not stacked. This
contradicts the requirement that we identified this segment during a fill up on line
y.

24

Finally, these pixels could not have been filled during a fill up, because the only
way they could been filled would be via the condition we are currently processing.
That is, the only way they could have been identified for processing is the exact
condition we are currently handling, which would have caused the current line to
be filled and therefore been excluded from a current fill operation.

B.2 The Proof for Fill Dn

By symmetry, the arguments presented for fill up apply identically to fill dn. Thus,
it is not possible for any filled segment to appear more than once in any flood
fill. This supports the contention that the method described in this paper can
be used without error to fill any fillable surface with completely arbitrary color
specifications.

B.3 Stack Management

Although we have shown that re-visiting pixels will not occur during the Fill Up
or Fill Dn operations, it is possible for a stack pop to specify a segment which has
already been partially or completely filled. In such cases, it is necessary to trim
the segment or delete it.

Our method is to check the stack for partially or completely overlapping segments
after each scan and fill operation. These are trimmed or deleted as appropriate.
Stack checking for this is not particulaly time- consuming since only entries match-
ing the current line number can have overlapping pixels. Generally there will be
none, so scanning for matching line numbers is quick.

Many special cases are possible, and we have covered each case in a companion
paper, available elsewhere on this website.4

B.4 Summary

We have proposed a proof of the contention that no filled pixels are ever visited
more than once by the defined algorithm. The suggestion that in certain cases
parts of a fillable segment could be encountered more than once lead to immediate
contradictions.

4C. Bond, “A Flood Fill Algorithm for Digital Computer Displays.” Note: The com-
panion paper, along with this paper, amounts to a PhD dissertation and has taken far
more time to adequately document than I originally intended. Hence, the companion pa-
per has not been completed or posted yet. I am still working on it and will post it as soon
as possible.

25

